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Abstract. Cloud platforms’ revenue mainly depends on enterprise users.
To target high-potential customers, the platform wants to identify yet-to-
adopt-cloud enterprises with substantial IT budgets for cloud services.
Since directly predicting future spending is impractical, we propose a
new problem: predicting enterprise users’ annual I'T budgets, which rep-
resent their consuming potential. To the best of our knowledge, no ex-
isting literature has studied this topic. In this paper, we propose a novel
holistic two-stage framework, BSA-DaMaM, that successfully counters
all major challenges of this problem—the lack of ground-truth labels
for budgets, the difference in expected prediction grains for various user
groups, and the high missing ratio of enterprise demographic features.
The first stage leverages Influence Functions and expert annotations to
improve budget approximations in a Human-in-the-loop paradigm. For
the second stage, we design a Dual-attention Missing-aware Multi-gate
Mixture-of-Experts (DaMa-MMOoE) network, which learns missing-aware
user embeddings and adapts to different prediction grain requirements.
Extensive experiments on proprietary data and online deployment vali-
date the effectiveness of BSA-DaMaM.

1 Introduction

Cloud platforms rely heavily on enterprise users for revenue. Identifying high-
potential, not adopted enterprises and predicting their spending can enable tar-
geted marketing efforts, thereby increasing platform revenue. This is typically
framed as the lifetime value (LTV) prediction problem [1, 2, 16], but directly pre-
dicting actual spending for non-adopters is impractical. According to Behavioral
Economics, customer spending depends on two factors: budget and consuming
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Fig. 1: (a) Business logic behind enterprises’ actual spending. Budget and willing-
ness are two independent latent factors that decide spending. (b) The long-tail
distribution of enterprise users’ annual spending. The leftmost bar representing
zero-spending users is clipped for beauty. (¢) The distribution of non-missing
feature coverage of enterprises.
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willingness, as is shown in Fig. 1a. For non-adopters, there is no behavioral data,
and only demographic data (e.g., patent counts) is available, making predictions
of willingness unreliable. While willingness is assessed after sales contact, bud-
get values, reflecting consumption potential, can be predicted. By identifying
high-budget companies, the sales team can refine strategies based on feedback
on their willingness. To the best of our knowledge, no existing literature has
studied this new problem of predicting user budgets.

The new problem comes with new challenges. First, there are no ground-truth
labels for budgets. The observed spending is often far below actual budgets,
making it an unreliable approximation. Expert annotations are helpful but are
scarce and imprecise, sometimes differing by hundreds of thousands of dollars,
leading to Data Inconsistency [12] and Noisy Labels [13]. Second, marketing
needs have different requirements on prediction grains for different user groups.
As shown in Fig. 1b, the head users (2% of total) contributing over 80% of
the total revenue for our cloud. The sales team needs exact predictions (i.e.,
regression) for these high-value users, while rough classifications suffice for other
groups. A single model struggles to cover this wide range of budgets. Finally, the
enterprise demographic data suffer from low data quality. Fig. 1c shows sampled
paid enterprises’ feature coverage ratio distribution on our platform. Most users
have less than 50% feature coverage, and missing features often cluster together.

In this paper, we define a new problem of predicting enterprise users’ I'T bud-
gets for cloud services and propose a novel holistic framework, BSA-DaMaM, to
address the challenges above. The framework includes two major components.
One is the Budget-Spending Alignment (BSA), which bridges the gap between
budgets and spending records in a Human-in-the-loop manner. Another is the
Dual-attention Missing-aware Multi-gate Mixture of Experts (DaMa-MMoE, or
DaMaM in short) network, where the DaMa learns missing-aware user embed-
dings and the MMoE satisfies the prediction grain requirements by multi-task
learning. The MMOoE structure [10] enables different experts to focus on missing
semantics of different feature groups.



In short, we make the following contributions:

— To the best of our knowledge, we are the first to define the problem of
predicting enterprise users’ I'T budgets in the cloud services setting.

— We propose BSA-DaMaM, a novel holistic two-stage framework that ad-
dresses key challenges: the lack of ground-truth labels for user budgets,
varying prediction grain requirements across user groups, and the high miss-
ing ratio of demographic features, through innovative algorithm design and
pragmatic engineering practice.

— Extensive experiments on industrial datasets verifies that BSA-DaMaM achi-
eves satisfying performance.

2 Problem Statement

2.1 User Budgets Prediction

Let X denote the demographic features of enterprise users and y € [0, +00) be the
corresponding actual annual average spending on a cloud platform A. The budget
z and the willingness ¢ (¢ € [0, 1]) are independent latent factors determining y
(z > y), with z depending on X and ¢ dependent on the user feedback U and
marketing strategies V. The relationship of them can be described as

y=E[z-q|X,U,V]=E[z| X]-E[g|U,V].

The sampled dataset is D = D, U D,, where D, = {(x;,y:)}}£, and D, =
{(xi, i, %)}, are the original samples and samples with expert annotations
on budgets, respectively (N < M). Given that U,V are unavailable, we aim to
train a model f to predict z on an adjusted dataset D = {(x;, %) il‘i'l"N, where
Z; = nanmaz(y;, Z;) approximates the real z;. The prediction can be represented

as 2; = f(x; | D,0), where 6 € O is the parameter set of our model.

2.2 Budget-Spending Alignment

Since Z; comes from either y; or Z;, it is likely that Z; # z;, making such users
noisy(-label) samples. We define data inconsistency as follows: let an oracle O
with a threshold e, perfectly measures the similarity of any given user pairs
(¢i,¢;) in terms of budget values, O(-,-) € {0,1} and O(x;,x;) = 1 iff d(z;, ;) =
|z — 2]
B

< €. Data inconsistency happens in D if
E'(Z,j), O(Xi7Xj) . ]].(d(él,éj) > EZ) =1.

Budget-spending alignment aims to find a set of noisy samples D, = {(x4, %) |2 #
z;} C D and its corresponding corrections of budgets {Z;}, such that after replac-
ing D, with D!, = {(xi, 2/)|Z; # z:}, the overall inconsistency in D' = D\D, UD,,

INC(D') =Y O(xi,x;) - 1(d(%], 2}) > €2) (1)
i#]

is minimized. Once such D’ is obtained, we remove all the accent notations for

convenience and denote it as D’ = {(x;, 2;) } V.
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Fig. 2: The two-stage BSA-DaMaM framework.

2.3 Multi-Task Objectives

Enterprise users can be divided into C sections {1,--- ,C'} based on their budget
values z, with a step-wise mapping function m. Users in section C, having the
largest budgets, are termed head users, while the remaining sections correspond
to waist and tail users. The practical needs of the sales team require different
prediction grains for the two user groups above, as specified by:

Task 1. User Multi-Classification on Budgets. Given a set of samples
DU = {(x;,2f) € X x {1,--- ,C}}M TN where 2¢ = m(z;). The model aims to
predict user u’s most likely budget section z¢ € {1,--- ,C}.

Task 2. Head User Budgets Regression. Given a set of samples D"¢9 =
{(xi,2i) € X x [th, +00)}NG, where N¢ is the number of head users in DS
(N¢ < M+ N), and th is the threshold of being head users, m(z;|z; > th) = C.
The model aims to predict head user u’s budget value 2, € [th, +00).

3 Method

Fig. 2 illustrates the proposed BSA-DaMaM framework. It operates in a two-
stage paradigm. First, BSA iteratively removes noisy labels from the adjusted
dataset D. Then, the DaMaM network optimizes two budget prediction tasks,
focusing on various aspects of missing states.

3.1 The BSA Framework

The budget-spending alignment is essentially a two-step procedure: first, find
noisy samples whose budget and spending do not match, and then find their
correct labels of budgets. We compute the Influence Functions (IFs) [18] of
training samples via simple differentiable models to achieve the first step. For
a sample ¢ = (x, %), we define the influence of upweighting ¢ on the loss at a
test point ¢; as Zy (¢, ¢;). Since BSA is not focused on optimal performance,
simple differential models like Logistic Regression (LR) and Multi-Layer Per-
ceptron (MLP) are used. If (cj,c;) is an incident of data inconsistency,
then Z,,(c;, c;) > 0. Theoretically, similar samples ¢; and ¢; should benefit
from each other’s upweighting, with Z, 1(¢;, ¢;) < 0. However, now upweighting



Algorithm 1: The BSA Process

Data: Adjusted dataset D, budget difference threshold e, loss threshold e,
sample size T¢, Ty, expand/shrink ratio «, max iteration T’
Result: Aligned dataset D’

t+ 0,0 « D, 6 « argmingeo ﬁ El’D‘l l(ci;0);

[y

D, + Sample({c; | 1(ci;0?) < ¢}, T.) U ExpertClean(
Sample({c; | d(2{”, 2{) > ., 5" > 1}, Tu,));

3 while ValLossTrace(0®) and t < T do

a | {87}« {F(alD®,09)};

5 | Di U, ep, Tor-k({c | Z01(c" ;) > 0,d(2", 2) > e:});

6 D,,, FF < Expert(D5);

7

8

9

N

D, {(xi, (2", 2 FF;,a)) | P € D}
t—t+1;
DO DD\ P, UD,;

B Linh ey 0);

10 O arg mingee
11 end
12 D'« DW;

c; increases the loss on c;, this suggests that either ¢; or ¢; is a noisy sample. Let
D), = {ci|3cj, Tui(ci,cj) > 0,d(Z;, 2;) > €,} denote the set of harmful training
samples, then we have D,, C Dy,. We can use Dy, as a noisy candidate set.

The complexity of calculating Z, for all (c;, ¢j) pairs is O(n?p), which is too
expensive and time-consuming. To mitigate this, we pick samples from a small,
clean subset of data D, (|D.| < n) to confirm that ¢; is not a noisy, then getting
the corresponding harmful training samples f),cl from D, is tractable in time. A
clean D, can be obtained via the popular small-loss trick [13]|, where training
points with loss smaller than threshold ¢; are considered clean. We then sample
a subset of such data points with size T, to get D.. Additionally, we sample T,
mispredicted data points from head and waist users and let experts decide which
are clean samples, in case there are not enough data points in these sections.

After identifying candidate noisy samples, the experts will inspect them and
can only give fuzzy feedback, i.e., Too Large (TL), Too Small (TS), or Almost
Correct (AC), rather than precise values. We devise a simple relabeling heuristic
2 =¢(2,%, FF, ) to exploit fuzzy feedback:

min(zf, 2§ — 1) min(Z;, o - 2)|TL
2 = { max(z§, 28 + 1),z = { max(, é - 2:)|TS
27 round(%;)|AC

where o € (0,1) is the expand/shrink ratio and round(-) means to round 2;
to nearest multiple of 50k/500k/... The tentative corrections replace the old
labels, and then the model is retrained. The Training-Identification-Correction
loop continues until a stop criterion, such as a maximum of T rounds or signs of
noisy labels disappear, is met. Alg. 1 summarizes the BSA framework.
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Fig.3: The DaMa-MMoE network. DaMa learns missing-aware feature embed-
dings through a symmetric dual-attention subnet. MMoE leads experts to focus
on different missing states and features for different budget prediction tasks.

3.2 The DaMa-MMOoE Network

Once we get the aligned dataset D’, we design the DaMa-MMoE Network to ad-
dress the remaining challenges of low feature coverage and multi-task objectives,
as illustrated in Fig. 3. DaMa first encodes the feature IDs and feature values
of x € R™ into d.-dim dense representations through two sets of embedding
layers: ef = Embs(i) and e¥ = Emb,(x;), where ef,e? € Rie.

For each feature group k and corresponding set of features Xy, the feature
missing state is s := [i | z; # p;, i € Xi], where p; is the default filling value of
x;. s is a varied-length sequence of all non-missing features’ ID in X;. We pad
sk, at the tail to match the max length of sequences and get the padded s). The
group missing state embedding is thus given by ef’k = Emby(s},).

Next, DaMa models the interaction among features and non-missing states
in each feature group X, through interaction layers. Each feature group has
both dense numerical features and sparse categorical features. To learn their
relationships, encoding methods like WDL, deepFM, and transformers [15] can
be used. The interaction layers outputs are given by I¥ = Interaction, (ef’k) and
I¥ = Interaction,([e? |i € X]), where I¥, I¥ € R d; is the output dimension.

Attention and Fusion Layers. After the interaction layers, we get two se-
quences of embeddings I* = [I§,--- ,I5] and IV = [I{, - - - , I%], which capture the
interactions among feature-missing states and feature values inside each feature
group. The first-order missing-aware representation is given by & = I° © I?,
where ©® is the element-wise product operation. &r captures the intra-group
missing information and semantics of feature values. We use transformers to
model the second-order feature interactions across groups: @ = A*© A", where



A? and AV are the transformer output of I* and I”, respectively. @5 captures
the inter-group missing information and semantics of feature values.

MMOoE. Multi-gate Mixture-of-Experts capture the difference of multiple
tasks with a lightweight parameters. Suppose there are My tasks, and k¥ is the
tower network corresponding to the k-th task, the MMoE can be written as

G
e (5 2) 2 = (YD g (@ifilx) ). )

where @ = (Pp|Ps) is the concatenation of missing-aware representations,
" (®x) = softmax(Wy,®Pyx) is the gating layer for the k-th task, and G is the
number of experts. Each tower network gets a dedicated embedding based on the
routing of the corresponding gating layer. We use MLPs as the tower networks.
The final objective is £ = Lejp + B+ Lyeg+7-|0]|3, where 3,7 are weights for the
regression task and ls-regularization. For the classification task, the output layer
is one-dim and Ordinal Regression loss [7] is used. For the regression task, the
output layer models a log-normal distribution [16] and log-normal loss is used.

4 Experiments

4.1 Datasets

To the best of our knowledge, no publicly available dataset exists for budget pre-
diction. Therefore, we use data sampled from Huawei Cloud’s spending records
from 2018 to 2022, including a total of 156k enterprises, and supplemented with
expert annotations for approximately 3k enterprises. Enterprises are divided into
5 sections, with head users accounting for 2.18% of the total. Enterprise demo-
graphic features include 10 different tables collected from several data providers,
each highlighting a unique aspect of an enterprise’s strengths.

4.2 Evaluation on Budget-Spending Alignment

We compare BSA with four baselines: Rule-based data cleaning [3], Nearest
Neighbor (which modifies outliers to the mean of their neighbors’ budgets), Top-
loss (which identify samples with the largest training loss as noisy candidates),
and DUTT [20]. We use the relative performance gain as the evaluation metric
since we lack ground-truth labels for noisy samples. The gain is calculated as
the performance difference in test set before and after label correction. We use
macro-average Fl-score for classification and SMAPE for regression tasks.

Fig. 4 shows that as the number of corrected samples increases, BSA’s rel-
ative performance gain improves steadily and achieves the best with sufficient
corrections. Rule-based data cleaning has little to no positive impact, while NN
gains in classification but fails in regression. Top-loss presents a similar curve to
that of BSA because they both use fuzzy feedback to correct samples but per-
forms worse due to its weaker noisy candidate identification. DUTI excels with
few corrected samples but struggles with scalability, and undersampling limits
its ability to identify noisy candidates in classification.
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Fig. 4: Relative performance gain of dataset debugging methods.

Methods F1 AUC |SMAPE N.Gini
XGBoost 0.4667 0.7164 | 0.3471 0.5528
ZILN 0.3968 0.6332 | 0.3273 0.6052

MDME 0.5349 0.8101 | 0.2905 0.6824

Bidden-MarfNet| 0.4120 0.6712 | 0.2820 0.6917

DaMa-MMoE |0.5488 0.8239|0.2746 0.7011
Table 1: Performance of different methods on two tasks.

4.3 Evaluation on Budget Prediction

We compare DaMa-MMoE with four well-known LTV prediction methods on
the aligned dataset D’: Two-stage XGBoost [4], ZILN [16], MDME [9], Bidden-
MarfNet [19]. For classification, we use macro-average F1-score and AUC as the
metric. For regression, we use SMAPE to evaluate the models’ ability to predict
budget values and Normalized Gini [16] to evaluate the accuracy of the users’
ranking. We modify the definition of p in the ZILN loss from whether a sample
pays to whether it belongs to head users to match the regression task’s scope.

Table 1 compares the results. DaMa-MMoE outperforms all baselines across
all metrics for its most suitable design for the data characteristics in the bud-
get prediction. ZILN and Bidden-MarfNet struggle with classification because
they are not designed for multi-classification. They give decent performance on
classifying the lowest rear and the head users’ class. When it comes to SMAPE
and Normalized Gini, deep models perform better than XGBoost due to their
stronger learning capabilities. Bidden-MarfNet outperforms MDME, probably
due to its dedicated design for the feature missing issue, as well as the absence
of short-term budgets to guide the annual-budget MDME.

4.4 Post-Deployment Performance

Our model replaced the previous XGBoost-based classification model in Huawei
Cloud’s marketing tool. The sales team can now query high-potential users by
specifying the budget value conditions and generate user acquisition tasks based



on budget predictions. Although it usually takes quite a period for the sales team
from identifying high-potential users to settling down the contract, we observed a
significant increase in usage statistics in terms of query and task-push activities.
We compare the statistics from 12/2023 ~ 01/2024 with those from 12/2022
~ 01/2023. The overall month-over-month (MoM) uplift measures the change
ratio of January compared to November, which shows an increase of 22.9%. The
average MoM uplift is the geometric average of the two months’ usage change,
which has risen by 17%. The overall year-over-year change, comparing the same
total count in the two months from the previous year, reflects an increase of
30.2%. These results suggest that the sales team is effectively using budget pre-
dictions, and the lack of complaints indicates satisfactory model performance.

5 Related Work

Learning with Noisy Labels. There are two main categories of approaches
that address the noisy label problem. The first is to learn with the noise and
mitigate its impact. This includes non-deep learning methods [6] and deep learn-
ing methods like robust architecture, sample selection, and loss adjustment [13,
11].However, these methods are often limited to symmetric noise and artificial
data, struggling with real, asymmetric, and imbalanced data. The second cat-
egory is to correct error labels in training samples from the data perspective,
which is called training data(set) debugging [8, 20].

Customer Lifetime Value (LTV) Prediction. Early LTV prediction meth-
ods were mainly based on historical data or classic statistical models such as
the RFM and Pareto/NBD model [5]. In recent years, ML and deep learning
methods have gained much popularity for LTV prediction problems [1,17]. By
using models such as random forests, future values can be predicted based on in-
dividual customers [14]. Combinations of the SMOTE and XGBoost algorithms
proved to be effective in improving prediction accuracy [2,4].

6 Conclusion

In this paper, we propose a new problem of predicting enterprise users’ IT bud-
gets for cloud services. To address the lack of ground-truth labels, we first ap-
proximate them using spending records and expert annotations, then fix the
possibly faulty approximations through the proposed BSA process based on In-
fluence Functions. Next, our novel DaMa-MMoE network tackles the remaining
challenges by encoding intra- and inter-group missing-aware information via a
symmetric dual-attention network to obtain two missing-aware representation
vectors. Extensive experiments on real-world datasets validate our approach,
which we hope can be applied to other B2B businesses and inspire further re-
search on identifying high-potential users.
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