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Abstract. The fundamental challenge in Multivariate Time Series fore-
casting is effectively modeling complex temporal dependencies and vari-
able correlation. Transformer-based models achieve breakthroughs but
face challenges with quadratic complexity and permutation invariant
bias. A recent model, Mamba, has emerged as a competitive alternative.
However, we observe that the issue of scan order sensitivity is not well
concerned. In this study, we propose a novel Correlation-aware Reordered
Scanning Mamba, namely CRS-Mamba, for multivariate time series fore-
casting. Specifically, we leverage the downsampling technique to model
temporal dependencies. Then, a bidirectional Mamba layer is introduced
to extract inter-variate correlations. Moreover, we propose Dimensional-
ity Reduction Scan Algorithm to alleviate scanning sensitivity problem
of Mamba. Extensive evaluations show that our approach secures supe-
rior performance in prediction accuracy on various datasets. Moreover,
ablation studies demonstrate the interpretability of CRS-Mamba.
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1 Introduction

Multivariate time series (MTS) comprises time series with multiple variables. In
recent years, MTS prediction has gained attention for its extensive use in various
fields, including transportation, climate and energy systems [1].

The complex temporal dependencies and uncertain variable correlations are
both pivotal for MTS. Generally, the task is challenge for two reasons: the tem-
poral dependencies can be obscured by entangled temporal patterns [2], and
the inter-variate correlation modeling may simultaneously introduce noise from
irrelevant variables. Transformer-based methods demonstrated great power ben-
efiting from self-attention mechanism [3] but suffer from quadratic complexity.

A recent model, Mamba [4], based on state space models (SSMs) [5], have
shown competitive performance over Transformer in various domains [6, 7]. It
employs selection mechanism to filter out irrelevant information. For efficiency,
Mamba further utilizes hardware-aware algorithm with linear complexity.

Despite the effectiveness of existing models, there are still some limitations.
In temporal dimension, intricate temporal patterns present considerable un-

certainty and require models to extract extensive temporal dependencies. Many



Z.Yao et al.

Mainland

Area 1

Island

Area 2

(a) (b)

period
period

(c)

short term lags

constant period

(d)

Fig. 1. Findings about MTS. (a) The correlation between routes is influenced by regions
to which they belong. (b) Normal scanning mode overlook correlation between A and
B. (c) The periodic characteristics of time series. (d) ACF value of period time series.

Transformer-based models focus on complex feature extraction and have not
fully utilized the unique characteristic of time series. The recurrent mode of
Mamba takes into account the properties of time series. But it primarily targets
long-range dependencies [4], limiting its performance in short-term input tasks.

In variable dimension, the sparsity of inter-variate correlation is not well
considered by current models. As shown in Figure 1(a), there will be a clear
correlation between two roads within one area(eg. Area 1 or Area 2). But the
correlations between roads from two different areas(eg. one road in Area 1 and
another road in Area 2) may be weak. If all roads are indistinguishably treated,
the existing global attention mechanism that models these variables will in-
evitably introduce more noise and increase unnecessary parameters.

In Mamba-based models, establishing an appropriate scanning order for vari-
ables is difficult. The sequence scanning paradigm of Mamba is only suitable for
1-D sequence. Unfolding variables into 1-D sequence will generate scan order
sensitivity problem. As shown in Figure 1(b), nodes A and B have similar pat-
terns as residential areas. With ’N’-shaped scanning order, Mamba may lead to
losing crucial information due to the long scanning interval between them.

In fact, extracting and modeling complex correlations between strongly cor-
related data is more effective than directly using complex network. (1) As shown
in Figure 1(c)1(d), ACF value is typically high in short-term lags while a dis-
tinct peak appears in constant period lags. It implies that both lag modes are
beneficial for modeling current time point. (2) Graph can better reflect the cor-
relation between variables. The graph structure is detached from the limitation
of physical space. Therefore, the scan order generated from it is more versatile.

In this study, we propose the CRS-Mamba (Correlation-aware Reordered
Scanning Mamba) for MTS forecasting. Specifically, we devise an Adaptive Pe-
riod Identifier to obtain period of dataset. In temporal dependencies modeling,
we utilize downsampling [8] to aggregate contextual semantic and model cross-
period trend. In variable correlation modeling, we design a bidirectional Mamba
layer to overcome the limitation of unidirectional modeling paradigm. As core
contribution, we propose Dimensionality Reduction Scan Algorithm to alleviate
scan order sensitivity problem. The contributions are summarized as follows:
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• We design the CRS-Mamba for accurate MTS prediction. Based on the inher-
ent characteristics of MTS in both time and variable dimension, our approach
effectively extract vital information and augment correlation modeling.

• We propose Dimensionality Reduction Scan (DRS) Algorithm. It sorts rel-
evant variables to obtain scanning order based on graph. The algorithm
effectively alleviate the scanning sensitivity problem of Mamba.

• We conduct experiments on eight public benchmark datasets. Results demon-
strate the superior predictive performance and interpretability of CRS-Mamba.

2 Related Work

2.1 Modeling Interaction Across Time and Variable

Modeling interaction across time aims to extract temporal dependencies. Trans-
former based models [2, 9, 10] that integrate the features of time series to improve
attention mechanism have been widely explored. Nevertheless, the self-attention
mechanism suffers from the quadratic complexity. To decrease the computational
complexity, many linear-based models [11, 8] have been presented and achieve
impressive results in modeling temporal dependencies.

Cross variable modeling is vital for more robust representation of variables.
Graph-based methods [12] are effective in modeling message propagation and
widely used in MTS forecasting. For Transformer-based methods, Crossformer
[13] and iTransformer [14] embed variables into tokens with attention mechanism
and achieve SOTA. Despite the efforts, we notice that these methods do not han-
dle complex variable correlation well and result in unavoidable noise. Therefore,
we leverage Mamba to address the issue with proposed scan algorithm.

2.2 Mamba and its Scanning Mode

The sequence modeling paradigm of Mamba hinders comprehensive learning
process for non-sequential data. In computer vision, models focus on scanning
entire region with different curves from multiple directions [7]. However, they
are not suitable for MTS which cannot form a Euclidean division. To tackle the
issue, MambaTS [15] presents a variable permutation training strategy, which
lacks intuitive consideration of variable associations. To this end, we propose
DRS Algorithm to enhance expressiveness of Mamba with high interpretability.

3 Preliminaries

In MTS forecasting, the input historical sequence across N variables is denoted
by X = {Xt

1, X
t
2, . . . , X

t
N}Lt=1 ∈ RL×N , with each Xt

i representing the time series
of the ith variate at the tth time step and L denoting the length of the historical
observation window. The objective of MTS forecasting is to predict future values
denoted by X̄ = {X̄t

1, X̄
t
2, . . . , X̄

t
N}

L+T
t=L+1 ∈ RT×N based on previously observed

MTS data X, where T represents the prediction time steps.
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Fig. 2. The architecture of CRS-Mamba. (a) Adaptive period identifier captures period
by FFT. (b) Dimensionality Reduction Scan Algorithm is applied to mitigate scan
order sensitivity problem. (c) Downsampling is utilized to model cross period temporal
dependencies. (d) The detailed structure of Bidirectional Mamba Layer.

4 Methodology

We divide the model into preprocessing and training phases. In preprocessing,
we devise an Adaptive Period Identifier to obtain period of dataset. Then we
propose the DRS Algorithm to obtain scan order of variables. During train-
ing, to model temporal dependencies, we aggregate the contextual semantic and
utilize downsampling to model cross period trend. In variable correlation mod-
eling, a bidirectional Mamba layer with scan order derived from preprocessing
is introduced. The overview of proposed CRS-Mamba is illustrated in Figure 2.

4.1 Adaptive Period Identifier (API)

The API is designed to capture period of MTS. Technically, we analyze the time
series in frequency domain by Fast Fourier Transform (FFT) as follows:

A = AvgNi=1(Amp(FFT(Xtrain)). (1)

Amp(·) denotes the calculation of amplitude values, Xtrain represents the raw
MTS of training set, A represents the calculated amplitude of each frequency,
which is averaged from N variables by Avg(·). We select the most significant
frequency f correspond to the top amplitude value, i.e. f = argTop(Ai).

The selected frequency correspond to period length p =
⌈
L
f

⌉
. To standardize

the input X for upcoming module, we pad X to be an integer L′ multiple of the
period by zero. The padding length is extended to

⌈
L
p

⌉
× P − L
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4.2 Dimensionality Reduction Scan Algorithm

For dataset with physical distance between variables, we can construct a distance-
based graph G using a Gaussian radial basis function [1]:

gij =

{
exp(−∥dij∥2)

θ , if dij < ϵ
0, otherwise

. (2)

dij denotes the distance between node i and node j; θ is a hyper-parameter to
control the distribution; ϵ is a predefined threshold to control the sparsity of G.

In scenarios where distance information is absent, the adjacency matrix of a
similarity-based graph G can be constructed by Pearson Correlation Coefficient:

gij = abs(
∑Lt

k=1

(
xk
i − x̄i

) (
xk
j − x̄j

)√∑Lt

k=1

(
xk
i − x̄i

)2√∑Lt

k=1

(
xk
j − x̄j

)2 ). (3)

xk
i and xk

j represents the value of node i and node j in the time series at the kth
time step; x̄i and x̄j are the mean value of time series of node i and node j in
Xtrain; Lt denotes the number of samples time steps.

Then, an improved activation function σ(q, k) defined with a domain and
range [0, 1] is applied to control the element values of graph G:

σ = (

1

1+e−kx+1
2
k
− 1

1+e
1
2
k

1

1+e−
1
2
k
− 1

1+e
1
2
k

)q, (4)

where q controls the attenuation rate and k controls the degree of neglect of low
values. Specially, with appropriate parameter tuning, it can be regarded as none
activation function or treat G as unweighted topology-based graph.

The core idea is that the related variables should be adjacent during scanning,
while unrelated variables should be kept apart. Assuming that each variable
corresponds to a real value z, then the absolute value of the difference between
variables i and j should be close to the distance gij between variables i and j. We
aim to minimize the overall disparity across all variables. Therefore, the problem
can be translated into mathematical forms to solve the objective function:

min
1

2

n∑
i=1

n∑
j=1

∥zi − zj∥2 gij . (5)

zi corresponds to the mapped value of variable i, gij denotes the element of G.
The original objective function can be simplified to tr

(
ZTLZ

)
, where Z =

(z1, z2, . . . , zN )T ∈ RN represents the mapping vector of variables, L denotes
Laplacian matrix of G, tr(·) denotes trace of matrix. To ensure that the mapped
nodes are distributed throughout the mapping space rather than clustering to-
gether, additional constraint ZTDZ = I is introduced. We can then use Lagrange
multipliers to solve the objective function:

f(Z) = tr
(
ZTLZ

)
+ tr

[
Λ
(
ZTDZ − I

)]
, ∂f(Z)

∂Z = 0
⇒ LZ = −DZΛ

, (6)
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where Λ is a diagonal matrix. The above optimization function is transformed
into a generalized eigenvalue problem. By finding the eigenvector corresponding
to the smallest non-zero eigenvalue, the desired vector Z can be obtained.

Sort the elements of the obtained one-dimensional vector Z. Since the map-
ping values of the related variables are numerically close, the corresponding order
after sorting will also be adjacent, thus yielding the desired scanning sequence.

4.3 Cross Period Modeling

From the analysis of auto-correlation, the variation of time points are similar with
adjacent area and the same phase among periods. Here, we utilize downsampling
[8] to separate the periodic components and focus on trend variations.

To incorporate local semantic and mitigate the impact of outliers, we perform
a sliding aggregation in terms of temporal dimension. Each aggregated data
point incorporates information from other points within its surrounding period.
Technically, this sliding aggregation can be implemented using a 1D convolution
and a kernel size of 2×

⌊
p
2

⌋
+ 1. It can be formulated as follows:

xi
t−L+1:t = xi

t−L+1:t + Conv1D(xi
t−L+1:t) (7)

Then, downsample the series into p subsequences of length
⌊
L′

p

⌋
. A fully con-

nected layer with parameter sharing is then applied to these subsequences. After
modeling, p subsequences are reshaped back to the sequence of original length.

4.4 Inter-Variate Correlations Modeling

The scanning process of Mamba is recursive pattern which exhibits unidirection-
ality, resulting in only incorporating preceding variables information. However,
there is no sequential recursion pattern between different variables. In order to
focus on the global context and better model the correlations among effective
variables, we use two Mamba modules to form a bidirectional Mamba layer:

Y = f(Y ;
←−−−
π(P )) + f(Y ;

−−−→
π(P )) + Y , (8)

where Y denotes the input,
−−−→
π(P ) represents the forward order obtained from

DRS algorithm,
←−−−
π(P ) represents the inverse order, f is the Mamba module.

Then a normalization layer integrating feed-forward network (FFN) is em-
ployed to enhance convergence and training stability in deep networks by stan-
dardizing all variates to a Gaussian distribution [14]. With the stacking of blocks,
CRS-Mamba can encode the observed time series and decode the representations
for future series using dense non-linear connections.

5 Experiments

Datasets and Baseline: We verify the performance of CRS-Mamba on eight
real-world datasets, including ECL, Traffic, ETTh1, ETTh2[2] and PEMS03,
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Table 1. Accuracy comparison over different MTS forecasting models, the lower the
better. A look-back window size L is fixed at 720 for PEMS datasets and 96 for the
remaining datasets. The best results are in bold and the second best are underlined.

Method T CRS-Mamba S-Mamba SparseTSF DLinear iTransformer PatchTST Crossformer FEDFormer AutoFormer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.384 0.404 0.388 0.406 0.385 0.391 0.383 0.396 0.387 0.405 0.379 0.399 0.406 0.437 0.375 0.415 0.533 0.490
192 0.433 0.434 0.445 0.441 0.435 0.420 0.433 0.426 0.441 0.436 0.425 0.431 0.458 0.457 0.427 0.448 0.514 0.487
336 0.470 0.453 0.490 0.465 0.476 0.440 0.491 0.467 0.491 0.462 0.470 0.457 0.611 0.574 0.458 0.465 0.507 0.493
720 0.492 0.485 0.506 0.497 0.461 0.454 0.528 0.519 0.509 0.494 0.523 0.507 0.731 0.646 0.484 0.496 0.547 0.522

ETTh2

96 0.293 0.346 0.297 0.349 0.303 0.347 0.329 0.380 0.301 0.350 0.294 0.347 0.713 0.593 0.341 0.385 0.377 0.411
192 0.375 0.398 0.378 0.399 0.385 0.399 0.431 0.443 0.380 0.399 0.372 0.397 2.861 1.316 0.433 0.441 0.443 0.451
336 0.423 0.434 0.425 0.435 0.421 0.428 0.459 0.462 0.424 0.434 0.426 0.440 2.048 1.145 0.504 0.495 0.501 0.496
720 0.431 0.451 0.432 0.448 0.420 0.437 0.774 0.631 0.432 0.447 0.435 0.456 2.835 1.449 0.479 0.486 0.501 0.502

ECL

96 0.138 0.234 0.139 0.236 0.210 0.280 0.195 0.277 0.148 0.239 0.180 0.273 0.153 0.254 0.188 0.304 0.229 0.338
192 0.157 0.252 0.162 0.259 0.206 0.282 0.194 0.280 0.167 0.258 0.187 0.280 0.175 0.274 0.196 0.311 0.221 0.330
336 0.176 0.272 0.178 0.274 0.219 0.295 0.207 0.296 0.179 0.272 0.204 0.296 0.222 0.315 0.212 0.327 0.265 0.363
720 0.201 0.295 0.204 0.299 0.260 0.328 0.243 0.328 0.208 0.297 0.246 0.328 0.243 0.329 0.244 0.352 0.321 0.395

Traffic

96 0.375 0.259 0.382 0.261 0.663 0.393 0.650 0.397 0.393 0.268 0.459 0.298 0.519 0.275 0.575 0.357 0.692 0.418
192 0.391 0.266 0.396 0.267 0.611 0.367 0.600 0.372 0.413 0.277 0.469 0.301 0.550 0.288 0.613 0.381 0.627 0.398
336 0.416 0.277 0.417 0.277 0.617 0.367 0.606 0.374 0.424 0.283 0.483 0.307 0.565 0.298 0.621 0.380 0.636 0.403
720 0.463 0.297 0.461 0.298 0.655 0.389 0.646 0.396 0.458 0.300 0.517 0.326 0.597 0.334 0.630 0.383 0.647 0.399

PEMS03

12 0.062 0.164 0.065 0.168 0.103 0.211 0.076 0.183 0.064 0.169 0.064 0.173 0.071 0.172 0.192 0.315 0.527 0.562
24 0.078 0.184 0.081 0.185 0.134 0.237 0.135 0.258 0.091 0.198 0.078 0.184 0.086 0.187 0.203 0.329 0.393 0.490
48 0.106 0.211 0.114 0.213 0.175 0.264 0.166 0.272 0.114 0.217 0.106 0.214 0.110 0.217 0.234 0.359 0.643 0.633
96 0.135 0.234 0.147 0.240 0.207 0.286 0.210 0.313 0.132 0.233 0.135 0.236 0.163 0.259 0.301 0.406 0.833 0.739

PEMS04

12 0.072 0.173 0.073 0.174 0.122 0.234 0.092 0.197 0.075 0.179 0.081 0.194 0.072 0.174 0.173 0.298 0.431 0.502
24 0.082 0.184 0.083 0.186 0.151 0.258 0.126 0.234 0.088 0.194 0.101 0.224 0.080 0.184 0.182 0.309 0.325 0.440
48 0.095 0.197 0.097 0.198 0.192 0.287 0.174 0.270 0.104 0.209 0.113 0.217 0.119 0.220 0.210 0.336 0.499 0.560
96 0.107 0.208 0.111 0.215 0.226 0.306 0.211 0.304 0.123 0.229 0.133 0.238 0.148 0.245 0.251 0.370 0.829 0.740

PEMS07

12 0.050 0.144 0.075 0.171 0.098 0.213 0.073 0.180 0.064 0.160 0.055 0.156 0.057 0.146 0.154 0.280 0.306 0.306
24 0.057 0.151 0.115 0.215 0.130 0.243 0.108 0.223 0.075 0.174 0.065 0.166 0.071 0.157 0.166 0.294 0.590 0.615
48 0.067 0.164 0.135 0.230 0.171 0.277 0.161 0.269 1.031 0.868 0.081 0.184 0.100 0.182 0.182 0.308 0.776 0.735
96 0.076 0.173 0.117 0.204 0.204 0.299 0.213 0.303 0.926 0.747 0.109 0.223 0.124 0.198 0.216 0.339 1.024 0.838

PEMS08

12 0.075 0.172 0.078 0.178 0.131 0.233 0.093 0.196 0.084 0.181 0.084 0.197 0.174 0.190 0.327 0.350 0.737 0.637
24 0.092 0.183 0.104 0.196 0.178 0.262 0.142 0.236 0.114 0.205 0.101 0.207 0.192 0.200 0.340 0.365 0.661 0.595
48 0.142 0.206 0.155 0.233 0.264 0.301 0.229 0.285 0.390 0.396 0.142 0.215 0.222 0.215 0.365 0.382 0.922 0.736
96 0.169 0.209 0.183 0.225 0.334 0.322 0.313 0.319 0.336 0.351 0.196 0.240 0.242 0.237 0.448 0.448 1.214 0.903

PEMS04, PEMS07, PEMS08 [14]. To demonstrate the effectiveness of CRS-
Mamba, we fairly compare it with eight representative SOTA forecasting mod-
els, including Transformer-based models: Autoformer [2], FEDformer [9], Cross-
former [13], PatchTST [10], iTransformer [14], Linear-based models: DLinear
[11], SparesTSF [8] and Mamba-based model: S-Mamba [6]. We evaluate the
models using Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Experimental Setting: We split datasets into training, validation and test
set by the ratio of 6 : 2 : 2 for ETT and PEMS, and 7 : 1 : 2 for ECL and Traffic.
To ensure that input length covers appropriate periods, all models employ a
look-back window L = 720 for PEMS and L = 96 for the remaining datasets.
Parameter θ is set to 1 and ϵ is set to 0. All experiments are conducted on a
machine with NVIDIA V100 GPU and 32GB memory using the Adam optimizer.

5.1 Performance Analysis with Baselines

The quantitative results of MTS forecasting is shown in Table 1. As we can
observe from the table, CRS-Mamba achieves outstanding performance on most
datasets across various prediction length settings, obtaining 46 first-place and
10 second-place rankings in total 64 settings. Specially in complex scenarios
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Fig. 3. Results comparison for varying
correlation with datasets.

Fig. 4. Forecasting performance with the
varing lookback window size.

Table 2. Ablations Studies on components. CPM: Cross period modeling. Mamba:
Bidirectional Mamba layer. DRS: Dimensionality Reduction Scan Algorithm. Lookback
window L = 720 for PEMS08, L = 96 for remaining datasets. Prediction length T = 96.

CPM Mamba DRS ETTh1 ECL Traffic PEMS08
MSE MAE MSE MAE MSE MAE MSE MAE

• ◦ ◦ 0.392 0.407 0.197 0.274 0.645 0.383 0.308 0.309
◦ • • 0.386 0.404 0.142 0.237 0.388 0.262 0.177 0.210
• • ◦ 0.386 0.405 0.137 0.234 0.382 0.261 0.198 0.249
• • • 0.384 0.404 0.138 0.234 0.375 0.259 0.169 0.209

with a large number of relevant variables, while other models struggle to model
effectively, CRS-Mamba demonstrates significant forecasting performance.

Channel Independent Strategy: CRS-Mamba does not achieve the best
performance on ETT compared with SparseTSF, which assumes variable inde-
pendence. However, its performance deteriorates on PEMS. It likely occurs as
CRS-Mamba is beneficial for capturing complex variate correlations while inad-
vertently introduce noise into datasets with weak channel dependencies.

The results of datasets correlation are shown in Figuer 3. When the dataset
correlation is not pronounced, CRS-Mamba that considers correlation modeling
may not outperform models with channel independent strategy.

Lookback Window Size: Although a growing lookback window offers more
information, previous studies have shown that Transformer based methods may
not necessarily benefit from it [11]. We experiment CRS-Mamba and several
baselines in this context. The results are shown in Figure 4. The prediction per-
formance of CRS-Mamba indeed improves with increasing input length, which
is attributed to the cross period modeling technique that extracts periodic fea-
tures over longer horizon. DLinear, PatchTST and iTransformer also show this
characteristic, but the overall curve of CRS-Mamba is the lowest.

5.2 Ablation Studies and Analysis

Table 2 presents ablation study results. CRS-Mamba with complete structure
achieves the best results, validating the effectiveness of proposed components.
The unimproved performance of certain components may be related to the char-
acteristics of datasets. CPM and DRS do not significantly improve the perfor-
mance on ETTh1 possibly due to the unobvious correlation between variables
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(a) ETTh1 (b) ECL (c) Traffic (d) PEMS08

Fig. 5. Visualization results of DRS algorithm.

(a) ECL

(b) Traffic

Fig. 6. MSE results of CRS-Mamba on
ECL and Traffic. The input length is set
as 96 and output length is set as 192.

(a) PEMS03

(b) PEMS04

Fig. 7. MSE (left) and MAE (right) results
of CRS-Mamba on PEMS03 and PEMS04
with different graph type.

and the weak periodic patterns. As the visualize of DRS algorithm in Figure 5,
the variable order of ECL almost unchanged after performing DRS algorithm,
inferring the original variable distribution aligns with the result of algorithm.

5.3 Dimensionality Reduction Scan Algorithm Analysis

Activate Function Parameters k, q: We use an improved activation function
σ(k, q) with hyperparameters k, q to control the attention span of algorithm.
Here, we fix one of the parameters while varying the other and conducting ex-
periments. Figure 6 illustrate the results. We observe that CRS-Mamba is not
obviously sensitive to q and k, which suggests prioritizing the relative strength
of correlations over their specific numerical differences.

Distance-based Graph and Similarity-based Graph: We experiment
distance-based and similarity-based graph on PEMS03 and PEMS04. As shown
in Figure 7, there are slight differences in performance between different graph.
Considering the computation cost and competitive performance, distance-based
graph can be the preferred method. However, if additional variable distribution
is unavailable, similarity-based graph serves as the sole selection.

6 Conclusion and Future Work

In this work, we propose CRS-Mamba to address the challenges of modeling
temporal dependencies and variable correlation. An Adaptive Period Identifier
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is leveraged to obtain main period. In temporal dependencies modeling, we utilize
downsampling to aggregate contextual semantic and predict cross-period trend.
Then, we design a bidirectional Mamba layer to capture variable correlation. To
mitigate scan order sensitivity problem, we propose DRS algorithm to interact
between correlated variables. Extensive experiments demonstrate the superior
performance of CRS-Mamba over existing SOTA methods.
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