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Abstract. Graph Neural Networks (GNNs) have proven highly effec-
tive for graph classification across diverse fields. However, despite their
success, GNNs remain vulnerable to adversarial attacks that can signif-
icantly degrade their classification accuracy. Existing adversarial attack
strategies mainly focus on supervised approaches, limiting their appli-
cability in scenarios where the label information is scarce or unavail-
able. This paper introduces an innovative unsupervised attack method
for graph classification that operates without relying on label informa-
tion. Specifically, our method first leverages a graph contrastive learning
loss to learn robust graph embeddings by comparing different stochas-
tic augmented views of the graphs. To effectively perturb the graphs,
we introduce an implicit estimator and flip edges with the top-k highest
scores, determined by the estimator, to maximize the degradation of the
model’s performance. Experiments on multiple datasets show the effec-
tiveness of our proposed unsupervised attack strategy in degrading the
performance of various graph classification models.
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1 Introduction

Graph neural networks have shown outstanding performance across a wide range
of real-world applications, including social networks [7], bioinformatics [8], com-
munication networks [12], and chemical structures [2]. The task of graph classi-
fication [17,3], aiming to assign entire graphs to predefined categories, has been
rapidly developed, providing strong support for various intricate applications.

However, recent research has shown that GNNs are vulnerable to adversar-
ial attacks [16,14], where minor modifications to the graph, such as adding or
removing edges or nodes, can cause significant performance degradation. For
example, in drug discovery, attackers can alter molecular structures to mislead
models into misclassifying toxic molecules as benign, potentially threatening
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human health [10]. Therefore, graph evasion attacks not only threaten the ro-
bustness of the model but could also have severe consequences in real-world
applications, highlighting the importance of research in this area.

For adversarial research on GNNs, node-level tasks have received consider-
able attention, while studies on graph classification tasks are relatively scarce.
Current attack methods for graph classification require direct or indirect access
to graph label information to guide the adversarial training process. In white-
box attacks, the gradient-based Gradargmax [1] method not only relies on label
information from the dataset but also needs access to the target GNN’s param-
eters for backpropagation. In black box attacks, it is still necessary to query the
model to obtain hard label information (i.e., know the predicted label of the
model, but not the prediction probability related to that label). For example, [5]
also relies on hard label information to guide its optimization process. RL-S2V
[1] and Rewatt [4] based on reinforcement learning require label information to
verify the success of the attack and determine the reward value. The dependence
of all these methods on label information limits their practical applicability in
real-world applications.

Recently, since the labels are hard to acquire, contrastive learning as a novel
unsupervised learning framework [6], exhibits performance comparable to super-
vised learning. However, graph contrastive learning in an unsupervised attack
for graph classification is a non-trivial task. Unlike continuous data in images,
graphs are discrete, and how to utilize the results of contrastive learning to mod-
ify graph data for an effective attack is a challenge. In addition, our goal is to
modify the graph so that it can affect the prediction results of downstream tasks.
Therefore, an essential challenge is determining how to effectively evaluate the
quality of the attacked graph.

To tackle these challenges, we introduce a novel unsupervised graph classifi-
cation attack strategy based on graph contrastive learning for graph embedding.
Specifically, our method first utilizes graph contrastive learning models to ex-
tract representations of graphs. We generate different graph views using data
augmentation, convert them into embeddings through a graph encoder, and em-
ploy a contrastive loss to maximize the similarity between the embeddings of
the same graph’s views while minimizing the similarity between the embeddings
of different graphs’ views. Then, we propose an implicit estimator to measure
the impact of various possible graph attacks (insert or delete edges) on graph
classification. Finally, we alter the edges with the top-k highest scores from the
estimator, effectively attacking the graph and consequently reducing the perfor-
mance of graph classification.

Our contributions. (1) We introduce an unsupervised method based on
graph contrastive learning for conducting adversarial attacks in graph classi-
fication tasks. (2) We propose an implicit estimator to measure the effects of
graph modifications and poison the graph via the estimator, thus degrading the
overall performance of graph classification. (3) Experiments show that our pro-
posed strategy achieves comparable performance with supervised attack methods
across four benchmark datasets for graph classification tasks.
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2 Related Work

Graph adversarial attacks can be broadly classified into two types: evasion at-
tacks and poisoning attacks [9]. We focus on evasion attacks, as they are more
relevant to graph classification tasks. In evasion attacks, the model’s training
parameters are assumed to remain unchanged. The attacker aims to generate
adversarial samples that target the already trained model. Importantly, this
type of attack alters only the test data, without necessitating model retraining.

[1] provides a significant starting point for researching evasion attacks on
GNNs, introducing the RL-S2V suitable for black-box attacks. However, re-
inforcement learning-based methods [4] are computationally intensive and of-
ten struggle to adapt to varying attack budgets. Diverging from the above two
methods, [5] proposes an optimization-based approach in a black-box context,
designing a symbolic stochastic gradient descent algorithm with guaranteed con-
vergence. [1] introduces Gradargmax, suitable for white-box attacks, greedily
selecting based on gradient information, but its performance in graph evasion
attack tasks is average. [15] designs a projection sorting method based on mutual
information in the white-box attack scenario.

3 Preliminaries and Problem Formulation

A graph set G comprises multiple graphs, where each graph Gm is defined as
an ordered pair Gm = (V m, Em), with V being the nodes set and E being the
edges set. For any edge emij ∈ Em, it connects the node pair (vmi , v

m
j ), where

vmi , v
m
j ∈ V m. For the graph Gm, elements of its adjacency matrix Am, Amij , are

1 if there’s an edge between nodes vmi and vmj , and 0 otherwise. The initial node
features are represented by X.

3.1 Preliminaries

Graph Classification. Given a set of graphs G = {G1, G2, . . . , GM}, graph
classification aims to assign a class label to each graph by learning a mapping:

f : G → C, (1)

where C is the set of class labels. The optimization objective is to minimize the
loss L between predicted and true labels, for each graph Gm with true label ym:

min
θ

M∑
m=1

L(fθ(Gm), ym). (2)

GNN Models. GNNs update node representations via message passing. A
typical GNN layer is:

h(l+1)
v = σ(W (l)h(l)v +

∑
u∈N(v)

W
(l)
rel h

(l)
u ), (3)



4 Authors Suppressed Due to Excessive Length

where h(l)v represents the embedding of node v at layer l, with the initial node
features X serving as h(0)v . N(v) is the set of neighbors of node v, W (l) and W (l)

rel
are trainable weight matrices, and σ refers to a non-linear activation function.

After propagating through L layers, a graph-level representation is obtained
by aggregating the node-level embeddings through a readout function:

Hg = Readout({h(L)v | v ∈ G}). (4)
Typically, the readout function uses average, sum, or max pooling.

3.2 Problem Formulation

Attacker’s Knowledge and Capability. This paper examines evasion attacks
on GNNs in a black-box setting, where the attacker accesses only the graph’s
node features and structure, without knowledge of the target model f or node
labels. The attack is confined to modifying the graph’s adjacency matrix, en-
hancing its applicability to graphs lacking node-specific features.
Adversary’s Objective. The adversary aims to alter the graph (e.g., add or
remove edges) to degrade classification performance, without access to label
information. The objective for a non-targeted evasion attack on model fθ is:

max
G′

M∑
m=1

I (fθ(G′
m) ̸= ym)

s.t. ∥G′ −G∥ ≤ ∆,

(5)

where I(·) is an indicator function, G′ is the modified graph, and ∆ is the attack
budget ensuring modifications remain plausible.

In the absence of labels, we evaluate the similarity of graph embeddings pre-
and post-attack using cosine distance, which focuses on directional changes in
embeddings rather than magnitude, providing a robust measure of structural
alterations. Our attack strategy maximizes this cosine distance between embed-
dings before and after graph modifications. We train an unsupervised model
ϕ using contrastive learning to obtain embeddings, modifying only the graph
structure while keeping node features unchanged. The formalized objective is:

max
A′

m

M∑
m=1

dis(fϕ(Am
′, Xm), fϕ(Am, Xm))

s.t. ∥A′ −A∥ ≤ ∆,

(6)

with cosine distance defined as:

dis(fϕ(A
′, X), fϕ(A,X)) = 1− fϕ(A

′, X) · fϕ(A,X)

∥fϕ(A′, X)∥∥fϕ(A,X)∥
. (7)

Values range from 0 (identical) to 2 (maximally different). To achieve this,
we train a proxy model via contrastive learning and an implicit estimator to
assess the impact of edge modifications. Edges are then modified based on their
ranked impact to maximize the cosine distance.
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Fig. 1: Attack workflow: Steps 1○, 2○, 3○ correspond to our method’s three
stages. The function r(·) denotes the Readout operation, t(·) indicates two ran-
domly selected data augmentations, and c(·) signifies the concat operation.

4 Our Design

Our method consists of three stages: proxy model training, attack model training,
and attack execution, as shown in Figure 1.

4.1 Proxy Model Training Stage

In this stage, our goal is to train a proxy model capable of obtaining graph
representations. We employ a GNN [11] as proxy model. Given that we do not
have access to graph label, we employ the graph contrastive learning technique
from GraphCL [13] to pre-train GNNs.

During the training phase, for each original graph, we randomly select two
out of four possible stochastic augmentation techniques (Node dropping, Edge
modification, Subgraph sampling, Feature masking) to obtain two augmented
graphs. Then, we feed these augmented graphs into the GNN proxy model with
identical parameters to get the graph representations Ha and Hb (defined in
Equation 4). Finally, we compare the representations of different augmented
graphs and update the GNN parameters according to the contrastive loss, iter-
ating this process for the predetermined number of iterations. The loss function
of contrastive learning is formulated as:

losspro = − log
exp(sim(Hm,a, Hm,b)/τ)∑M

m′=1,m′ ̸=m exp(sim(Hm,a, Hm′,b)/τ)
, (8)

where M represents the total number of graphs; Hm,a and Hm,b denote the two
augmented graph representations of the m-th graph; τ denotes the temperature
parameter. The function sim(Hm,a, Hm,b) quantifies the cosine similarity be-
tween the embeddings Hm,a and Hm,b. This cosine similarity function is defined

as sim(Hm,a, Hm,b) =
H⊤

m,aHm,b

∥Hm,a∥∥Hm,b∥ . The notation ∥ · ∥ indicates the L2 norm.
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Fig. 2: the distribution of dij from an experiment on NCI1 dataset.

4.2 Attack Model Training Stage

At this stage, we propose an implicit estimator to evaluate the impact of edge
modifications on the graph representations. This impact is quantified by calcu-
lating the cosine distance between graph representations before and after the
modifications. For each potential edge between node pairs within a graph, we
construct each edge embedding by concat hi and hj where the embeddings of
each node pairs generates from GNN proxy model (defined in Equation 3).

he(i,j) = concat(hi, hj). (9)

This edge is then flipped—if it exists, the edge is removed; if not, the edge is
added—resulting in an attacked graph (A′, X). The attacked graph is fed into
the GNN model, as trained in 4.1, to obtain the attacked graph embedding H ′

g.
We compute the cosine distance dij between the original graph embedding

Hg and the embedding of the graph post-attack H ′
g as the ground truth label

for our estimator, as defined in Equation 7. The estimator then employs a MLP
model to approximate this ground truth:

d̂ij =MLPψ(he(i,j)). (10)

Here, d̂ij is the estimator’s predicted value, which also signifies the estimated
importance of the edge e(i, j), and ψ encapsulates the parameters of the MLP
model. To this end, we iteratively train the estimator for a specified number of
epochs to ensure convergence. Subsequently, the trained estimator is employed
to execute the attack operations as detailed in Section 4.3.

In our study, we employ GNN model trained from contrastive learning to
generate graph representations.

As shown in Figure 2, we present the distribution of cosine distances dij
between graphs before and after attack. We can observe that although modifica-
tions to single edge have a minimal impact on the overall cosine distance, with
the maximum value being a mere 0.002 (located at the far right of the axis),
there are significant variations in the impact of different edge modifications on
the cosine distance.
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Due to flipping only one edge at a time, the cosine distance values before and
after the graph modification are small. To ensure normal training of the neural
network, we scale all cosine distances by a specific coefficient for effective neural
network training.

Therefore, the loss function of estimator is computed by:

lossatt =
∑

||λ ∗ dij − d̂i,j ||2. (11)

4.3 Attack Execution Stage

In the third stage, we use the trained estimator to predict the impact of mod-
ifying various edges on the overall graph features, aiming to execute an unsu-
pervised attack by flipping the most critical edges. Specifically, for each graph
G, we rank all potential edges e(i, j) ∈ e (whether existent or not) based on the
predicted value d̂i,j , computed by the estimator trained in Section 4.2. Given an
attack budget K (i.e., ∆), we select the top K edges with the highest scores:

Eattack = {e1, e2, . . . , eK},
where ei ∈ sort(e), for i = 1, 2, . . . ,K.

(12)

Here, e1 is the edge with the highest score, e2 is the edge with the second-highest
score, and so on, up to eK . Based on Eattack, we flip these edges and generate
attacked graph, termed poisoned graphs.

4.4 Complexity Analysis

Time complexity: Our time complexity mainly depends on the model used
for training, and our model uses a 3-layer GCN and a 2-layer MLP, so the
time complexity is not high. Space complexity: As we calculate the score for
each edge in the graph, the memory requirement is O(N2), where N denotes
the number of nodes. In graph classification tasks, the edge count per graph is
generally limited (typically in the tens, not exceeding a few hundred), so this
requirement is entirely manageable.

5 Experiments

5.1 Experimental Setting

Datasets. We select four public datasets: NCI1 , NCI109, Mutagenicity and
ENZYMES. A summary of these datasets is in Table 1.
Baseline. (1) Unattacked. The GNN model is trained on without attacked
graphs. (2) Random. The GNN model is trained on poisoned graphs with ran-
domly attacked edges. (3) GradArgmax [1]. Select the edge with the largest
absolute value of gradient to flip. (4) Projective Ranking [15]. Using mutual
information, it sorts and evaluates the attack benefits of each disturbance to
obtain effective attack strategies.
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Table 1: Summary of datasets used.
Mutagenicity NCI1 NCI109 ENZYMES

Number of Graphs 4337 4110 4127 600
Number of Classes 2 2 2 6

Avg. Number of Nodes 30.32 29.87 29.68 32.63
Avg. Number of Edges 30.77 32.30 32.13 62.14

(a) NCI1 (b) NCI109

(c) Mutagenicity (d) ENZYMES

Fig. 3: The impact of attack budget on unsupervised task performance.

Hyperparameter Setting. We use the default hyperparameters for the base-
lines. For the attack budget, we evaluate values of 1, 2, and 3, which represent the
number of edges added or removed during the attack. Other hyper-parameters
include a learning rate of 0.001, 100 epochs, and a batch size of 256.

5.2 Attack Evaluation

Attacking Unsupervised Models. We first conduct attack tests on unsu-
pervised graph node embeddings. Given the unavailability of label information
in unsupervised attack scenarios, we benchmark against random attacks due to
the impracticality of conventional methods. Figure 3a, 3b, 3c and 3d illustrate
the impact of our method on graph contrastive learning models under different
attack budgets. With increasing attack budgets, the random method exhibits
minimal overall variation. This is attributed to the fact that for graphs with
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Table 2: Performance on GAT model.
Dataset Method k=1 k=2 k=3

NCI1 Unattacked 75.67 75.67 75.67
Random 75.18 74.45 74.21

Projective Ranking 73.72 70.31 68.61
GradArgmax 74.93 74.69 73.96

Ours 73.24 71.53 69.83

NCI109 Unattacked 71.19 71.19 71.19
Random 71.19 70.94 70.46

Projective Ranking 69.97 66.82 65.13
GradArgmax 70.70 70.21 69.73

Ours 69.73 68.04 66.34

Mutagenicity Unattacked 74.42 74.42 74.42
Random 73.96 73.50 72.35

Projective Ranking 73.50 71.88 70.96
GradArgmax 73.73 73.04 72.12

Ours 73.27 71.43 70.51

ENZYMES Unattacked 35.00 35.00 35.00
Random 35.00 35.00 33.33

Projective Ranking 30.00 26.67 23.33
GradArgmax 35.00 33.33 33.33

Ours 33.33 31.67 28.33

Table 3: Performance on GCN model.
Dataset Method k=1 k=2 k=3

NCI1 Unattacked 73.97 73.97 73.97
Random 73.48 73.23 72.51

Projective Ranking 71.28 68.61 66.18
GradArgmax 71.77 70.31 68.85

Ours 72.26 70.80 68.13

NCI109 Unattacked 69.98 69.98 69.98
Random 69.25 68.52 67.07

Projective Ranking 67.31 64.89 62.95
GradArgmax 68.52 67.79 66.10

Ours 68.77 67.31 64.65

Mutagenicity Unattacked 72.81 72.81 72.81
Random 72.35 72.12 71.89

Projective Ranking 69.81 68.20 66.35
GradArgmax 70.96 70.27 70.04

Ours 71.20 70.05 69.59

ENZYMES Unattacked 35.00 35.00 35.00
Random 35.00 33.33 33.33

Projective Ranking 26.67 23.33 20.00
GradArgmax 33.33 33.33 31.67

Ours 28.33 26.67 23.33

dozens or more edges, random edge modifications do not yield significant ef-
fects. In contrast, our method identifies edges that significantly influence model
predictions, leading to improved attack performance.
Attacking supervised Models. Tables 2 and 3 provide a detailed comparison
of our attack method against other techniques in supervised tasks on GCN model
and GAT model. It is observed that our approach significantly outperforms the
random method. Compared to GradArgmax, our approach consistently outper-
forms GradArgmax in attacks on the GAT model across multiple datasets and
varying attack budgets. In attacks on the GCN model, although GradArgmax
performs well on the NCI1, NCI109, and Mutagenicity datasets under lower at-
tack budgets, as the attack budget increases, our method gradually surpasses
it, demonstrating superior robustness. Compared to Projective Ranking, while
Projective Ranking slightly outperforms our method in some cases, it does so
at the cost of requiring access to the model’s predictive probability distribution.
This reliance on additional model-specific information can limit its practical ap-
plicability, especially in scenarios where such data is inaccessible. In contrast, our
method operates independently of these constraints, offering a more universally
applicable and streamlined attack strategy.

6 Conclusion

In this work, we introduce an unsupervised method utilizing graph contrastive
learning to perform adversarial attacks in graph classification tasks in the ab-
sence of graph labels. Our experiments across diverse datasets, such as NCI1,
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NCI109, Mutagenicity and ENZYMES, show the effectiveness of our method in
decreasing graph classification accuracy.
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