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Abstract. NAND flash-based solid-state drives (SSDs) are becoming
the predominant storage medium for database systems. However, the sig-
nificant mixing of pages with varying lifespans in B+-tree-based databases
exacerbates the problem of huge write amplification (WA) which is caused
by the rewrites of live pages during garbage collection (GC) in SSDs, re-
ducing database performance significantly. Frozen pages are dominant in
database workloads, which are actively updated for a period and then
eventually no longer updated but remain valid. Existing data placement
schemes fail to recognize and isolate frozen pages, leading to repeated
migrations of them.
This paper proposes SepFrozen, a novel machine learning-based mecha-
nism for recognizing and isolating frozen pages to decrease repeated mi-
grations of them, thereby reducing WA and enhancing database perfor-
mance. SepFrozen can be integrated seamlessly with existing rule-based
data placement schemes. We integrate two state-of-the-art schemes with
SepFrozen and implement them in LeanStore with ZNS SSDs. Experi-
mental results show that SepFrozen reduces WA by 30.2% and enhances
database throughput by 19.5%.

Keywords: Write Amplification · ZNS SSD · Frozen Page · Machine
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1 Introduction

NAND flash-based solid state drives (SSDs) are becoming the predominant per-
sistent storage medium for database systems due to their increased performance
and reduced cost [1]. However, Write Amplification (WA) [3] arises when SSDs
are used as storage devices for databases [2,9], which means the actual amount of
data written to the underlying flash medium exceeds the amount of data written
by the database [2]. High WA degrades SSD lifetime and I/O performance [12]
due to excessive writes, thus reducing database performance [2]. WA is caused
by additional Garbage Collection (GC) operations in SSDs due to the "out-of-
place update" [6] characteristic. In addition, the significant mixing of database



pages with varying lifespans further exacerbates this phenomenon [2], because
of rewrites of cold valid pages when collecting hot obsolete pages. In this paper,
we define the lifespan of a page (4 KiB) as the number of pages written by the
database from when a page is written until it is invalidated (or until the end
of the benchmark). We employ the term hotness to quantify the duration of a
page’s lifespan: hot pages are characterized by shorter lifespans, and vice versa.

A key technique to reduce WA is the isolated placement of data based on
their invalidation times [3]. Specifically, pages with similar invalidation time are
written into the same erase block, allowing them to expire around the same time,
reducing the proportion of valid pages in the block for GC, thereby lowering WA.
However, existing solutions [3–8] are primarily designed for general block I/O
workloads and lack adaptation to the characteristics of databases. For instance,
the issue of frozen pages [2,10,11] exists under database workloads, where many
pages are frequently rewritten to the SSD within a short time window, and do not
get updated afterward but remain valid. There are two significant shortcomings
in current research leading to unnecessary migrations of frozen pages. First, they
do not implement efficient frozen page isolation mechanisms [3,4,7]. They depend
on page hotness for placement, and once a page transitions to a frozen state, its
hotness gradually diminishes, instead of being directly allocated to a designated
area for frozen pages. Second, existing studies [2, 10] do not fully leverage page
characteristics and thus lack effective methods for recognizing frozen pages.

In this paper, we propose a learning-based frozen page recognition and iso-
lation mechanism (SepFrozen) aiming at reducing WA for databases. The key
insight of SepFrozen is to utilize an effective frozen page recognition model to
extract frozen pages from valid pages during GC and place them in an isolated
area, avoiding mixing with normal pages. SepFrozen can be well integrated with
existing rule-based data placement schemes. We integrate two state-of-the-art
rule-based data placement schemes (SepBIT [3] and DAC [4]) with SepFrozen,
resulting in two frozen-page aware data placement schemes (SepFrozenBIT and
SepFrozenDAC) that demonstrate enhanced performance.

Our schemes necessitate the recognition of frozen pages based on their char-
acteristics on the host side, as well as the control over data placement and GC.
However, conventional block interface SSDs, through their Flash Translation
Layer (FTL), conceal the actual physical addresses of pages [12], thereby failing
to fulfill this requirement. Emerging Zoned Namespace (ZNS) SSDs [12] enable
fine-grained data placement and GC on the host side. Consequently, this paper
implements frozen page-aware data placement schemes in LeanStore [1] (a B+-
tree-based database storage engine) with end-to-end support for ZNS SSDs, to
achieve the goal of reducing WA in databases.

The main contributions of the paper are summarized as follows:
1. We propose a lightweight and effective machine learning-based frozen page

recognition model which can extract frozen pages from valid pages accurately.
2. We propose a novel frozen page isolation mechanism (SepFrozen) which

can be integrated with various existing rule-based data placement schemes seam-
lessly.



3. We integrate two state-of-the-art schemes with SepFrozen and thus propose
two frozen page-aware data placement schemes, which proactively recognize and
isolate frozen pages. We implement them in LeanStore with end-to-end support
for ZNS SSDs.

4. We evaluate SepFrozen using TPC-C and YCSB workloads, demonstrat-
ing that SepFrozen effectively reduces the write amplification and improves the
performance of databases.

This paper is organized as follows. Section 2 introduces the background and
related work. Section 3 describes the motivation of our work. Section 4 details the
design and implementation of our schemes. Section 5 evaluates the performance
of our schemes, and we conclude this paper in Section 6.

2 Background and Related Work

2.1 Background

Writing to flash pages (flash read/write units) necessitates first resetting the
chip at a larger granularity of "erase block" (a.k.a. superblock) before new data
can be written [6]. Due to the "erase before write" restriction, SSDs perform
garbage collection (GC), copying valid pages in the flash block to a new location
before erasing and writing new data [2]. GC results in additional writes to flash
pages, leading to WA in SSDs [12]. In databases based on B+-tree index, the
characteristics of "write skew" and "temporal locality" result in severe mixing of
hot and cold data [2], further intensifying the WA problem. We define the Write
Amplification Factor (WAF) [3] as the ratio between the actual amount of
data written to the underlying flash storage and the data written by the host
(i.e., the database). Studies [2, 9] show that during TPC-C benchmarking on
SSDs, WAF can increase to over 4 times its initial value, resulting in declining
SSD IOPS and a reduction in tpmC to approximately 1/3 of its original level.

LeanStore [1] is a high-performance B+-tree-based database storage engine
designed for modern CPUs and NVMe SSDs.

2.2 Related Work

Data Placement Schemes. To perform data separation, we need to predict
when a page will be overwritten in the future. Most prior works in this respect
are rule-based [2–5,9] and learning-based [6–8] schemes. Rule-based schemes are
simpler to implement and have lower overhead. SepBIT [3] and DAC [4] sepa-
rate data based on inferred lifespan and write count, respectively. 2R [2] proposes
"two region" FTL and isolate cold pages into the cold flash region. WARCIP [5]
minimizes the rewrite interval variance of pages in a flash block through Greedy
Clustering. FlashAlloc [9] de-multiplexes concurrent writes into per-object ded-
icated flash blocks. However, since the database file is a single large object,
this approach is difficult to work effectively. Learning-based schemes offer better
adaptability and more accurate hot/cold separation, albeit with higher over-
head [6]. PHFTL [6] and ML-DT [8] employ GRU and TCN models to predict



page lifetimes, respectively. MiDAS [7] employs MCAM to dynamically adjust
the number of groups and sizes. However, both rule-based and learning-based
schemes fail to recognize and isolate frozen pages, leading to repeated migra-
tions of them. Therefore, we develop a learning-based frozen page recognition
model built upon rule-based schemes, leveraging the low overhead of rule-based
schemes and the high accuracy of learning-based approaches.

ZNS SSD. Conventional block interface SSDs, through their FTL, conceal
the actual physical addresses of pages. As a result, existing research employs
SSDs with novel interfaces to enable host-side control over data placement, such
as Multi-stream SSDs [10], Open-Channel SSDs [14], and OpenSSDs [6]. Never-
theless, Multi-stream SSDs cannot fully coordinate GC between the host and the
SSD, while Open-Channel SSDs and OpenSSDs lack a unified standard in the
industry, leading to high adaptation and maintenance costs. The NVMe Zoned
Namespace (ZNS) [12] is a new storage interface that groups logical blocks into
zones and mandates sequential writes for each zone (while still allowing ran-
dom reads). ZNS SSDs enable fine-grained data placement and GC on the host
side [12]. This enables the host to optimize the writing schemes based on work-
load characteristics more efficiently, further reducing GC costs and WA. Addi-
tionally, there are commercial ZNS SSD products [13] on the market. Therefore,
this paper integrates our proposed frozen page-aware data placement schemes
with ZNS SSDs to reduce WA in databases.

3 Motivation

In this section, we first demonstrate the mixing of hot/cold data of the database,
and then identify the limitations of existing studies.

We perform the TPC-C benchmark on LeanStore and then calculate the
lifespan for each page with the unit of bytes. Fig. 1 shows the page lifespan
distributions over logical block addresses (LBAs), with the background color
indicating the frequency of the corresponding lifespan values. The page hotness
exhibits a two-level distribution, where hot pages with shorter lifespans and cold
pages with longer lifespans are mixed, significantly increasing WA during GC.

We evaluate the WA optimization effects of four rule-based data placement
schemes (SepBIT, DAC, 2R, WARCIP) and NoSep scheme (no data separation)
in database workloads, as depicted in Fig. 3. To highlight the performance short-
comings of current schemes, we employ the FK scheme [3] which represents an
oracular baseline that leverages future knowledge for placement decisions: run-
ning the benchmark once in advance, calculating the lifespan of each page, and
then using K-means clustering to group pages based on their lifespans [7]. We
found that, even the top-performing scheme, SepBIT, exhibits a 43.3% gap in
WA compared to FK, indicating that current data placement schemes still have
substantial room for improvement in database scenarios. Next, we will analyze
the two causes of this performance gap.

Cause 1: data placement schemes lack awareness of database frozen
pages. Frozen pages play a crucial role in database workloads; however, exist-



Fig. 1: Lifespan distribution of TPC-C
workload over logical block addresses.

Fig. 2: Frozen pages in database work-
loads.

Fig. 3: Overall WAF of existing
schemes. Fig. 4: Overall FAR of existing schemes.

ing data placement schemes do not account for them, resulting in unnecessary
repeated migrations.

Frozen pages are dominant in database workloads. We observed that
many pages are frequently updated and written to the SSD within a short time
window, but then eventually are no longer updated and remain valid. In relevant
research [2, 10], these pages are referred to as frozen pages. Fig. 2 illustrates
the fraction of frozen pages over time. Both the x-axis and y-axis have been nor-
malized to a range of 0 to 1, clearly demonstrating that frozen pages constitute
around 30% to 50% of the cumulative written pages.

Data placement schemes have repeated migrations for frozen pages.
Existing data placement schemes depend on page hotness for placement. Once
a page transitions to a frozen state, its hotness gradually diminishes, instead of
being directly allocated to a designated area for frozen pages. We now explain
it by analyzing SepBIT and DAC.



SepBIT: Victim pages of varying ages (the total number of pages written to
the SSD since last write) are migrated to different zones. As illustrated in Fig. 5,
a possible scenario is that a page is initially written to the zone of class 1 (the
hottest), then becomes a frozen page, after which it is moved to the zone of class
3 during GC. As the page ages, it may be migrated to the zone of class 4 and 5
subsequently, ultimately reaching the coldest zone (class 6).

DAC: The page is migrated to a hotter zone with each database write and a
colder zone during GC, as depicted in Fig. 6. A possible scenario is that a page
may be written to the zone of class 6 (the hottest) before becoming a frozen
page, after which it is moved to the zone of class 5, 4, 3, 2 sequentially before
finally reaching class 1 (the coldest) each time it is selected as a victim page.

We define the Frozen Page Amplification Rate (FAR) as the proportion of
frozen pages among all valid pages migrated during GC. Fig. 4 shows the FAR
of the four rule-based schemes (SepBIT, DAC, 2R, WARCIP) and NoSep. All of
them exhibit a FAR of above 50%, indicating that for every 100 victim pages,
at least 50 frozen pages are migrated repeatedly.

Cause 2: lack of effective frozen page recognition methods. The
premise of proactively migrating frozen pages in isolation is to effectively recog-
nize frozen pages. The difficulty lies in how to fully leverage page characteristics
for accurate recognition. Currently, only 2R [2] has proposed a method for rec-
ognizing frozen pages, which simply classifies pages written by the database as
normal pages and pages written during GC as frozen pages. This method fails
to fully leverage the hotness characteristics of pages, resulting in substantial
misclassification of normal pages as frozen pages (as shown in Fig. 18, the false
positive rate(FPR) is 41%). Another study [10] employs a hard-coded method
to recognize frozen pages based on attributes such as the tables to which the
pages belong. However, this is not a general method for different scenarios.

In light of the above analyses, there is an urgent need for an effective frozen
page recognition method and a frozen page-aware data placement scheme. We
will now provide a detailed description of our proposed solutions.

4 Design and Implementation

In this section, we provide detailed descriptions of SepFrozen, including the
learning-based frozen page recognition model and the frozen page-aware data
placement schemes. Finally, we deploy our schemes in LeanStore with ZNS SSD.

In order to accurately and efficiently recognize frozen pages, we propose a
learning-based frozen page recognition model. We first extract six features that
represent the key attributes of frozen pages, then collect and process the train-
ing data. Subsequently, we train a logistic regression model with the Stochastic
Gradient Descent algorithm and deploy it in the system.

To effectively mitigate the issue of repeated migrations of frozen pages in
existing data placement schemes, we propose a novel frozen page isolation mech-
anism (SepFrozen) which can be integrated with various existing rule-based data
placement schemes seamlessly. We integrate two state-of-the-art schemes with



Fig. 5: SepBIT workflow.
Fig. 6: DAC workflow.

Fig. 7: SepFrozen Overview.

SepFrozen and thus propose two frozen page-aware data placement schemes,
which proactively recognize and isolate frozen pages. The workflow of SepFrozen
is shown in Fig. 7 and includes the following steps: 1○ During database opera-
tion, page hotness information is recorded within the page. 2○ Evicted pages are
written to ZNS SSD. 3○ Based on the rule-based data placement scheme, pages
are assigned to different zones. 4○ When storage space is insufficient, GC is per-
formed and valid pages are read into memory. 5○ Hotness records are extracted
from the pages, and the frozen page recognition model is used to determine
whether a page is frozen. 6○ If the page is determined to be frozen, it is written
directly to the frozen zone; 7○ otherwise, it is placed in the appropriate zone
according to the rule-based placement scheme.

4.1 Learning-based Frozen Page Recognition Model

The process comprises four stages: feature extraction, data processing, model
training, and online inference.

Feature Extraction. We utilize a monotonic timer (instead of the real
timestamp) that increments by one for each database-written page. For each
page, we extract six features: write time (WT), valid data in the page (VD),
average access interval (AI), average modify interval (MI), access count (AC),
and modify count (MC). We collectively refer to the tuple of (WT, VD, AI,
MI, AC, MC) as a hotness record (HR). WT denotes the time at which a
page is written to the SSD. The update interval between two consecutive writes
effectively characterizes the hotness of the page. VD indicates the total number



of bytes of valid records in the page, which remains unchanged once the page
becomes frozen. We track the access and modification times for each page in
memory, from the last read into memory until its subsequent write to the SSD.
AC and MC represent the access and modification counts, respectively. AI and
MI are the averages of the access and modification intervals, respectively. AI,
MI, AC and MC provide a robust indication of the hotness of pages in memory.
We calculate the Pearson correlation coefficients between the frozen attribute
and the following six attributes: the difference between the two consecutive WT
values of the same page (WT-diff), the difference between the two consecutive
VD values of the same page (VD-diff), AI, MI, AC, and MC. The resulting
coefficients are 0.7369, 0.7948, 0.5021, 0.4937, 0.6374 and 0.5695, respectively.
All correlation coefficients are higher than 0.4, indicating that the six variables
are correlated with the frozen attribute to a certain extent.

Data Processing. This stage includes collecting hotness records, tagging
frozen labels, standardization, packaging data, and dividing the datasets into
training and testing sets. (1) During benchmarking, we collect hotness records
of every database-written page, along with its invalidation time. If the page
is generated by a new write, we assume its invalidation time is infinite. (2)
If the invalidation time is finite, the page is not yet frozen. Otherwise, if the
invalidation time is infinite, the page is tagged with a frozen label. (3) The values
are standardized to enhance model performance. (4) We package the current
and last hotness records of the page, referred to as HRcurrent and HRlast, into
a single sample. If the page is generated by a new write, we set all the values
of HRlast to zero. (5) We perform random sampling, dividing the dataset into
training and testing sets at a ratio of 3:1, allocating 75% of the data to the
training dataset.

Model Training. We predict whether a page is frozen based on its hotness
information, framing this as a binary classification problem that can be addressed
using a logistic regression model [6]. The logistic regression model calculates the
dot product of the hotness record and the weight vector, followed by applying
the sigmoid function to transform this into a probability value between 0 and
1. If the resulting probability exceeds a predefined threshold (commonly set at
0.5), the model classifies the page as frozen; otherwise, the model classifies the
page as normal. The logistic regression model employs Maximum Likelihood
Estimation (MLE) to estimate the weight parameters. To further improve the
model’s fitting performance, we apply the Stochastic Gradient Descent (SGD)
algorithm for iterative optimization of these parameters. For ease of reference, we
will denote this as the SGD model in this paper. Given that logistic regression
does not accommodate temporal feature inputs, we stack HRcurrent and HRlast

to create a single sample with 12 features. Finally, we train the SGD model
using the training set. In Sec. 5.2, we compare the classification performance
of the SGD model with other commonly used binary classification models to
demonstrate why it is chosen for frozen page identification.

Online Inference. We implement model inference in C++ within LeanStore.
The model has two types of misclassifications (Sec. 5.1): false negative (where a



frozen page is mistakenly classified as normal) and false positive (where a nor-
mal page is mistakenly classified as frozen). False negative pages will undergo
multiple migrations according to SepBIT and DAC schemes, eventually reaching
the coldest zone. Conversely, for pages misclassified as frozen, once the page is
modified and rewritten, the original data is marked invalid, and the new page is
written to a normal zone.

4.2 Frozen-page Aware Data Placement Schemes

We integrate two effective rule-based data placement schemes (SepBIT and
DAC) with SepFrozen, resulting in two frozen-page aware data placement schemes
(SepFrozenBIT and SepFrozenDAC) that demonstrate enhanced performance.
The following outlines the specific processes of these two schemes, using six active
zones as an example.

The flow of the SepFrozenBIT scheme is illustrated as Fig. 8. A global
lifespan threshold, termed lifespan_threshold, is dynamically maintained based
on the average lifespans of recently reclaimed zones. The lifespan of a zone is
defined as the time difference between when the zone is reclaimed and when the
first page is appended to it. For database-written pages, we calculate their update
intervals (the time difference between the current write and the last write). If it is
issued from a new write, we assume that it has an infinite update interval. If the
page’s update interval is less than lifespan_threshold, it is written to the zone
of class 1; otherwise, it is written to the zone of class 2. For GC-written pages,
we apply the frozen page recognition model to determine whether the page is
frozen. If classified as frozen, it is directly written to the frozen zone (zone of
class 6); otherwise, we check whether the page is from the first or second class. If
from class 1, it is migrated to class 3; if from class 2, it is directed to the fourth,
fifth, or sixth classes based on its age (the time difference between the current
time and the time of its last write), compared against the threshold values of
4 ∗ lifespan_threshold and 16 ∗ lifespan_threshold.

The flow of the SepFrozenDAC scheme is illustrated as Fig. 9. A tem-
perature value is maintained for each page, starting at 2 for pages written for
the first time. The temperature value increases by one with each write by the
database and decreases by one with each GC. For database-written pages, if the
temperature value is i, the page is written to the i-th class, and its temperature
is incremented. For GC-written pages, we first use the frozen page recognition
model to determine whether the page is frozen. If deemed frozen, it is written
directly to the frozen zone (zone of class 1); otherwise, if its temperature value
is i, it is written to the i-th zone, and its temperature is decremented by one.

4.3 Implementation Details

This paper implements frozen page-aware data placement schemes (SepFrozen-
BIT and SepFrozenDAC) in C++ within LeanStore (a B+-tree-based database
storage engine), and establishes end-to-end integration with ZNS SSD. At first,
we need to consider how to manage data read/write for ZNS SSD. Flash-Friendly



Fig. 8: SepFrozenBIT workflow. Fig. 9: SepFrozenDAC workflow.

Fig. 10: Two-level L2P Page Mapping Table Hierarchy.

File System (F2FS) [15] has been adapted to support ZNS SSD devices. However,
utilizing F2FS would necessitate modifications to its internal data placement and
GC strategies, as well as the transmission of the database’s page hotness informa-
tion to F2FS, complicating the implementation. ZoneFS [16], which is specifically
designed for zoned devices (such as ZNS SSDs and SMR HDDs [12]), exposes
each zone as a file visible to user space. Through these zone files, applications
can access each zone of the ZNS SSD using POSIX system calls (e.g., open, read,
and write) [16], allowing applications to perform user-controlled data placement
and GC while complying with sequential write constraints. Consequently, we
implement our solution on ZoneFS.

Two-level Page Mapping. This study uses ZoneFS to manage reads and
writes to ZNS SSDs and must adhere to sequential write constraints. However,
B+-tree databases exhibit a highly random write pattern, necessitating the im-
plementation of a logical-to-physical page mapping table within the database,
as depicted in Fig. 10. The tables maintain the mapping from logical block ad-
dresses (LBAs) to physical block addresses (PBAs), both of which are 32 bits
(capable of representing up to 16 TiB of data). We employ an array for the first-
level mapping table, using the most significant 22 bits of the LBA as offsets,
and the corresponding elements serving as memory addresses of the second-level
mapping tables. The first-level mapping table resides in memory for quick access.
Each second-level mapping table is 4 KiB in size, using the least significant 10
bits of the LBA as offsets to store corresponding PBA values. We persistently



store the second-level page tables in the order of their logical addresses, while
caching accessed second-level mapping tables in memory. After getting the cor-
responding PBA for a given LBA, we can compute the zone number and the
offset within the zone based on the PBA.

Storage Usage. We must allocate a small amount of space within each 4KiB
B+ tree page to store HRcurrent and HRlast. Each record occupies a total of 16
bytes, resulting in an overall cost of 32 bytes per page. Additionally, extra storage
space is required for the secondary mapping table. For a total data volume of 1
TiB, the mapping table will require 1 GiB of storage space.

Memory Usage. For a total data volume of 1 TiB, the first-level mapping
table requires 2 MiB of memory. The memory usage of the second-level map-
ping tables is also proportional to the dataset size. For example, in the TPC-C
experiment in Sec. 5, the second-level mapping tables collectively occupy 28.16
MiB of memory. Our employed SGD model is linear and incorporates 12 feature
inputs, leading to 12 corresponding weight values. Each weight, represented as
double in C++, totals 96 bytes. During GC, batch inference is conducted, and
the hotness records of all victim pages are stored in an array. For instance, to
reclaim a zone of 256 MiB, assuming all pages are valid (a scenario that is not
realistically achievable), the memory required for model input data would be
6144 KiB. Additionally, there is overhead associated with intermediate compu-
tational results. Empirical measurements indicate that a single inference of the
model consumes 14,720 KiB of memory.

Time Overhead. Since GC is managed by a separate thread and indepen-
dent of the working thread, and the system does not continuously require GC, we
perform frozen page recognition on the victim pages during GC. This design not
only circumvents the critical writing path but also allows some hotter pages in
the victim zone to become invalid preemptively due to rewriting, thus reducing
both inference overhead and the likelihood of false positives. Fig. 19 shows the
inference overhead of the model. Experimental results confirm that if the model
completes inference within 0.05 seconds during GC, the database performance
will not be adversely affected.

5 Evaluation

5.1 Experimental Setup

Competitors. We compare SepFrozenBIT and SepFrozenDAC with SepBIT [3],
DAC [4], WARCIP [5], and 2R [2], along with NoSep. NoSep appends any written
pages (either database-written or GC-rewritten pages) to the same open zone.
2R classifies database-written pages as normal pages and GC-rewritten pages as
frozen pages, separating normal and frozen pages into two different open zones.
The number of open zones of SepBIT, DAC, and WARCIP is all set to 6.

Hardware. The experiments were performed on a Linux 5.15 system with
an Intel Xeon E5-2620 v4 CPU (2.10GHz, 16 cores, 32 hardware threads), 128
GiB of main memory and a Western Digital Ultrastar DC 4TiB ZN540 ZNS SSD
as storage.



Workloads. The YCSB experiment performs accesses to 10 GiB datasets
and thus 336 million key-value records. We performed it with 100% writes
(100W) and 50% writes mixed with 50% reads (50W). During the 60-minute
test, a total of 511 GiB and 365 GiB of data were written for YCSB-100W and
YCSB-50W workloads, respectively. TPC-C provides a more intricate bench-
mark for online transaction processing, featuring various transaction types and
a sophisticated database structure. The size of the dataset is determined by the
number of warehouses and expands as the benchmark runs. The number of ware-
houses is set to 100. As a result, a total of 406 GiB of data was written during
the 120-minute test. The size of the database buffer pool is set to 1 GiB for both
TPC-C and YCSB workloads.

Scheme Evaluation Metrics. We employ three metrics to assess the ef-
fectiveness of the proposed data placement schemes: FAR (Frozen Page Ampli-
fication Rate, refer to Section 3), WAF (Write Amplification Factor, refer to
Section 2.1), and tpmC (transactions per minute for the TPC-C workload) as
well as ops/s (operations per second for the YCSB workloads).

Model Evaluation Metrics. We use accuracy, recall, and false positive rate
(FPR) to evaluate the classification performance of the frozen pages recognition
models. We first label frozen pages as "positive" and normal pages as "negative".
Then, we define true positives (TPs) and false negatives (FNs) as the number of
frozen pages that are correctly and incorrectly classified, respectively. Similarly,
we define true negatives (TNs) and false positives (FPs) as the number of nor-
mal pages that are correctly and incorrectly classified, respectively. Accuracy,
recall, and FPR are then defined as (TP + TN)/(TP + TN + FP + FN),
TP/(TP + FN), and FP/(FP + TN), respectively.

5.2 Results

In this section, we present evaluation results. First, we compare FAR, WAF,
and database throughput performance under three different database workloads
across our two proposed schemes and five existing schemes. Next, we adjust
various parameters in our data placement schemes and report the WAF under
the TPC-C workload, illustrating the effectiveness of our schemes under different
parameter configurations. Lastly, we examine the performance of frozen page
recognition models and outline the determination of key settings of the model.

Default Configuration. We use Cost-Benefit [3] as our default GC policy
for zone selection and fix the zone size and the GP threshold as 256 MiB and
15%, respectively. We define the garbage proportion (GP) as the fraction of
invalid pages among all pages. When the overall GP value in the ZNS SSD is
higher than the GP threshold, GC is triggered.

Performance Comparison. Fig. 11-14 illustrates the performance com-
parison results. Initially, SepFrozenDAC and SepFrozenBIT show a reduction in
FAR of 27.5% to 35.4% relative to DAC and SepBIT, respectively, indicating
that proactive frozen page recognition and isolation effectively reduce repeated
page migrations. With the reduction in FAR, SepFrozenDAC and SepFrozen-
BIT also achieve a reduction in WAF compared to DAC and SepBIT. Notably,



the WAF of SepFrozenBIT decreases to 1.60, representing a 30.2% reduction
compared to SepBIT under the TPC-C workload; in comparison, the WAF of
FK that leverages future knowledge for placement decisions (see Section 3) is
1.49, whereas SepFrozenBIT’s WAF is nearly identical. Finally, the effective re-
duction in WAF leads to increased throughput (tpmC) in SepFrozenDAC and
SepFrozenBIT by 15.6% and 19.5% relative to DAC and SepBIT, respectively.

Fig. 11: Overall FAR of each scheme. Fig. 12: Overall WAF of each scheme.

Fig. 13: Throughput un-
der TPC-C workload.

Fig. 14: Throughput un-
der YCSB workloads.

Fig. 15: WAF impact
of zone selection algo-
rithm.

Fig. 16: WAF impact of
zone sizes.

Fig. 17: WAF impact of
GP thresholds.



Impact of Data Placement Scheme Configurations. Zone selection al-
gorithm, zone size, and GP threshold significantly affect WA [3]. Therefore, in
order to verify that our schemes are effective under different parameter config-
urations, we vary the zone selection algorithm, zone size, and GP threshold for
evaluation. As indicated in Section 5.2, reduced WAF directly correlates with
improved database performance. Given space limitations, we focus exclusively
on the WAF results of the seven schemes under the TPC-C workload.

Configuration 1 (Zone Selection): We use Greedy [3] and Cost-Benefit [3]
strategies for zone selection in GC. As illustrated in Fig. 15, Cost-Benefit yields
a lower WAF than Greedy, and with both selection methods, SepFrozenDAC
and SepFrozenBIT reduce WAF compared to DAC and SepBIT.

Configuration 2 (Zone Size): We vary the zone size from 64 MiB to 1024
MiB. Different zone sizes are simulated by restricting the available size of zone
files. For example, when the zone size is set to 128 MiB, only the first 128 MiB
of the file is accessed. As depicted in Fig. 16, WAF increases with larger zone
sizes across all schemes. Notably, SepFrozenDAC and SepFrozenBIT consistently
exhibit lower WAF than the other schemes, with reductions of 17.5% to 33.9%
compared to DAC and SepBIT.

Configuration 3 (GP threshold): We vary the GP threshold from 10% to 25%.
As demonstrated in Fig. 17, elevating the GP threshold induces a progressive
decline in WAF across all schemes. Particularly, SepFrozenDAC and SepFrozen-
BIT consistently outperform the others, achieving WAF reductions of 14.5% to
30.8% compared to DAC and SepBIT.

Frozen Page Recognition Model Comparison. We compare the classi-
fication performance, training time and inferring time (normalized for 256 MiB
of data) of the SGD model with three other commonly used binary classification
models: logistic regression (LR), support vector classifier (SVC), and GRU recur-
rent neural network [6]. Fig. 18 and Fig. 19 shows that, while the classification
performance of the SGD model is somewhat lower than that of the GRU model,
its inference overhead is considerably lower. Therefore, we select the SGD model
as the frozen page recognition model for its efficiency.

Key Parameter and Features Determination. We now evaluate the im-
pact of a key parameter, the time window length (TWL), on the model’s inference
performance. TWL refers to the number of historical hotness records per sam-
ple of the model’s input. Fig. 20 shows the model’s classification performance as
TWL varies from 1 to 4. Increasing TWL from 1 to 2 led to a significant improve-
ment in classification accuracy, increasing from 78% to 92%. However, as TWL
increased, storage overhead also grew linearly (see Section 4.3). Consequently,
we set TWL to 2 in this study to balance model performance gains with storage
efficiency. Additionally, we adjust the input feature set of the model. Initially,
only the VD feature is included, followed by the sequential addition of WT, AI,
MI, AC, and MC. As shown in Fig. 21, when only the VD feature is used, the
model achieves an accuracy of only 71%. However, when both VD and WT are
included, the accuracy increases to 89%. With all six features incorporated, the
model accuracy reaches 92%.



Fig. 18: Performance of Different Frozen
Page Recognition Models.

Fig. 19: Time Overhead of Differ-
ent Frozen Page Recognition Mod-
els.

Fig. 20: Performance impact of TWL.
Fig. 21: Model Performance Impact of
Feature Sets.

6 Conclusions

We propose SepFrozen, a novel learning-based data placement mechanism for
WA reduction in databases by recognizing and isolating frozen pages. Inspired
by the observation that frozen pages are dominant in database workloads, we uti-
lize a lightweight and effective machine learning model to recognize frozen pages
based on their hotness information and place them in isolation. This mechanism
mitigates the issue of repeated migrations, thereby reducing WA. SepFrozen inte-
grates seamlessly with existing rule-based data placement schemes. For database-
written pages, we utilize a rule-based data placement scheme; for GC-written
pages, we apply the frozen page recognition model to determine if the page is
frozen. If classified as frozen, it is directly written to the frozen zone; otherwise,
we continue to apply the rule-based data placement scheme. Evaluations demon-
strate that SepFrozen achieves lower WA and significantly enhances database
performance compared to existing data placement schemes.
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